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Mechanical and photoelastic properties of oriented
poly-4-methyl-1-pentene investigated by Brillouin
spectroscopy

S. H. ANDERS, R. EBERLE, M. PIETRALLA

Abteilung fiir Experimentelle Physik, Universitdt Ulm, Albert-Einstein-Allee Il, 89069 UIm,
Germany

E-mail: martin.pietralla@physik.uni-ulm.de

The elastic constants Ci1, Ci3, Gz and Cu4 of oriented poly-4-methyl-1-pentane (P4M1P) films
were measured with Brillouin scattering. The photoelastic constants py1, p13, P31 and pss were
measured by evaluating the integral intensities of the phonon lines. The correlation of the
photoelastic constants pi;s and ps; with the degree of stretching was determined by
evaluating the relative integral intensities of the Brillouin lines with the phonon propagation
vector into and perpendicular to the stress direction. The other photoelastic constants were
measured by comparing the angle-dependent relative integral intensities of the transverse
and longitudinal Brillouin lines. The elastic constants, as well as birefringence, were
surprisingly found to be unaffected by further stretching of the sample above the necking
region. The density was constant for all degrees of stretching. The photoelastic constants
P11 and ps3 showed significant variation during deformation. The results have been
compared with former measurements of polypropylene (PP) by Cavanaugh and Wang.
Because the elastic constants are unchanged during deformation, the modulation of the
intensities is due to the variation of the photoelastic constants for this material. © 7998

Kluwer Academic Publishers

1. Introduction

Brillouin scattering has been used for more than two
decades for studying the elastic and relaxational prop-
erties of polymers. The directional properties of hyper-
sound propagation in oriented polymers have been
explored for different amorphous and semicrystalline
polymers such as polycarbonate (PC) [1, 2], poly-
methylmethacrylate (PMMA) [3], polyethylene-
terephthalate (PET) [4], polyvinylfluoride (PVF) [5],
polypropylene (PP) [6, 7] and polyethylene (PE) [8].
Relaxational phenomena, which require either the
evaluation of the full-width at half-maximum
(FWHM) or a special combination of scattering geo-
metries, has been studied for example, for PPG [9],
polyisoprene [ 10] and polysiloxane [11-13]. The inte-
gral intensity of the phonon lines is related to the
photoelastic tensor, which can give additional in-
formation regarding the processes causing the orienta-
tion inside a sample. The photoelastic tensor describes
the effect of small elastic deformations on the dielectric
tensor and therefore the refractive index. Although the
integral intensity is easily accessible if a suitable func-
tion is used for the description of the spectra, it has
seldomly been evaluated. To our knowledge, only
Wang and co-workers have investigated the depend-
ence of the photoelastic tensor components on the
degree of stretching for polycarbonate [1] and poly-
propylene [6]. For measurements of the photoelastic
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tensor, often special polarization geometries are ap-
plied, which are useful for the detection of, for
example, weak transverse phonons beneath strong
longitudinal lines. Longitudinal Brillouin lines can be
observed with a VV scattering geometry (incident and
detected light vertically polarized), while transverse
Brillouin lines can be more easily detected usinga VH
geometry (detected light horizontally polarized).
In this work we show that is also possible to measure
the photoelastic tensor with the simpler VA geometry
(all polarization directions detected), which also has
the advantage of a larger scattered intensity and is
therefore favourable due to shorter accumulation
time.

2. Experimental procedure

2.1. Sample preparation
Poly-4-methyl-1-penten (P4M1P) was donated by
Mitsui (Japan) as a film (RT18) with 200 um initial
thickness. Standard formed pieces were cut out using
a press. The films were drawn with a Zwick 1440
tensile testing machine at 100 °C, which is above the
glass temperature, T'g, but below the melting temper-
ature of the crystalline parts (cf. Table I). Films with
draw ratios of A = 1.0, 4.3, 5.4, 5.9, 6.5 were prepared.
The slowest possible stretching speed (0.5% min~?)
was used.
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TABLE I Sample data of PAM1P

Melting temperature, Ty [16] 235°C

Glass temperature, T'g [16] 30°C

Density [16] 0.834 gem ™3
Molecular weight, My 406690 g mol !
Mw/My 1.8

Additionally, an extruded rod with a diameter of
approximately 1.5mm was prepared by Kanamoto
and co-workers [ 14, 15] through extruding with a hy-
drostatic pressure of 1200atm, a temperature of
200°C and a velocity of l mmmin~'. The degree of
stretching computed by comparing the diameter of the
rod before and after extruding is approximately 60.
The density of the samples was measured by density
gradient method. It was identical for all samples. The
value of 0.834 gcm ™2 agrees with the value supplied
by the manufacturer [16].

2.2. Birefringence measurements

The birefringence of the film samples was measured
using a polarization microscope (Leitz) with tilt com-
pensators (Ehringhaus, type 697K and 1054K).

2.3. WAXS measurements

Wide-angle X-ray spectroscopy (WAXS) diffraction
patterns were measured with a self-built flat-plate
camera and a Philips PW1120/00 X-ray-generator
(tube PW2213/40, Cu-K, line).

2.4. Spectra recording

The spectrometer consists of a piezoelectrically
scanned Fabry-Perot-Interferometer from Burleigh
Instruments. Spectra were accumulated in a five-
pass arrangement. The free spectral range (FSR) of the
interferometer was 10.93 GHz. The light source was
a frequency doubled Nd-YAG laser (DPSS-532 with
450 mW, Coherent, USA) with vertical polarization.
Because of the high Rayleigh intensity, the incident
light was modulated by a Pockels cell. A 90A-VA
scattering geometry (90° antireflex geometry, incom-
ing light vertically polarized, all polarization direc-
tions detected) [17] was used (Fig. 1). All experiments
were performed at room temperature.

The sound velocity contours of the anisotropic sam-
ples were determined with a computer-controlled
goniometer possessing an angular setting accuracy of
0.006 °. The angle, o, associated with the sound velo-
city is the angle included by the direction of the stress
and the phonon wave vector, ¢g. Thus when o = 0°, g is
parallel to the direction of stress (= z-axis, “3”). If
o = 90°, q is perpendicular to that direction (= x-axis,
“1”). The y-axis “2” is perpendicular to the x- and
z-axes (Fig. 1). Vector components are denoted with
letters while for tensor components numbers are
employed.
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Figure | The scattering geometry used in this work. k; and k; are
perpendicular to each other. The stretched film bisects this angle. o is
the angle of the scattering vector against the stretching direction.

2.5. Data evaluation

The spectra were fitted to a set of Pearson type VII
[18] functions attaining the full-width at half-max-
imum (FWHM), height and frequency shift of the
Brillouin lines. The integral intensity of a line is com-
puted by a numerical integration [19] of a Pearson
type VII shaped line with the parameters gained from
the fitting procedure. From the frequency shift, o, and
scattering vector, ¢, the sound velocity, v, is computed
as

(1a)

v=—
q

q=2|K| sing (1b)

(for details see [17]).

3. Theory: elastic and photoelastic
properties in samples exhibiting
hexagonal symmetry

3.1. Sound waves in anisotropic solids

The field equations for sound waves in the continuum

can be derived from the laws of conservation of mass,

momentum, energy and angular momentum (cf. eg. [8,

20, 217). The conservation of mass leads to the equa-

tion of continuity

dp
— divE =0 2
o+ pdivt @
From the conservation of momentum the Cauchy
equation of motion is deduced, which is

o8

Div’¢ —p-— =
iv*e p@t

0 3)

in linear approximation for non-polar materials in the
absence of external forces and damping. The density of



mass p = p(r,t) depends on time ¢ and location r.
& (r, 1) is the velocity of the particles calculated by
partially differentiating the displacement field s(r, 1)
with respect to time. 2o(r, t) is the stress tensor fully
describing the state of stress of the system. div is the
vector divergence and Div the tensor divergence. For
small deformations the stress depends linearly on the
strain, €, as formulated by Hooke’s law where *C'is the
tensor of the elastic constants

26 =1C¢ 4

2g is the symmetric part of displacement tensor
%s which is defined as

5Sl-
Sike = 2
’ 3xk

)

g =3 (Sx + Sk,0) (6)

The equation of motion for a solid derived from Equa-
tions 2 and 3 is
5231
C..i—
Lkt anaxk

ps; = (7
The summation convention is applied. One solution of
this equation has the form of plane sinusoidal waves

So(r, 1) = ey5,e" ™) (8)

where o is the index (longitudinal or transverse), e,
the polarization vector and s, the amplitude
of a sound mode travelling into the direction e,
with the wave vector ¢ = ge,. The value of the
sound wave vector is defined by the wavelength, A, or
the phase velocity of the mode v,, and its frequency
Wy
e =%, 2T

q =qeé, = v n A

q0

ey ©)

For plane sinusoidal waves the phase velocities and
polarizations of sound modes can be determined by
solving the equation

{en ' 4C' €, — pvl?c(en) ’ 28} Tl = 0 (10)

Using the Christoffel tensor, I', the according eigen-
value equation reads as

*T(e,) — p-vgolen) 28] =0 (11)

The eigenvalues are the three sound velocities that are
observable in a solid.

3.2. Solution of the sound wave equation
for the case of hexagonal symmetry
A uniaxial deformation will change the symmetry
of a sample from isotropic to hexagonal. The sym-
metry is uniaxial co-fold. The elastic tensor, however,
is the same as that of a hexagonal system. Orthorhom-
bic symmetries can occur due to transverse stresses in
this films [4]. In cases of hexagonal symmetry, the

elastic tensor has the form (using the known Voigt
notation)

Cii Cys
Ci, Ciy Ci3 O 0 0
Ciz Cys
Cij = (12)
0 0 0 Cu O 0

0 0 0 0 C4u O

0 0 0 0 0 Cel

The subsequently required photoelastic tensor is sim-
ilar to the elastic one

Pi1 P12 Pz O 0 0
P12 P

pis P1a p3z O 0 0
Dijki = (13)

L 0 0 o0 O 0  pes
The tensor components Cgg and peg are given by

C66 :%(Cn - C12)
(14)
Pe6 = %(Pu — P12)

From the tensor components, the sound velocities are
computed as follows.

2pV2 = A + (B* — 4[C-D — E])'?

A =B = C,;sina + Cs3c08%a + Cys

C = C,,sin*o + C4y cos’a (15)
D = C;5cos’a + Cyysin’a

E = sinocos?a(C 5 + Cay)?

V., refers to the quasi-longitudinal and V_ to the
quasi-transverse wave. The third solution is the pure
transverse mode

v, = <C66 sin®ol + Cuq cos’a >1/2 (16)

, =
P

3.3. Photoelastic properties

of anisotropic solids
The intensity of the Brillouin scattered light is
the square of the amplitude of the scattered electro-
magnetic field, E;. It depends on the variation of
the dielectric tensor due to the movement of the par-
ticles caused by the sound wave. In the far-field limit
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one gets [22]

E(R,1) = A(R)J e, [k x ko x [(8%e(r, 1) - /1] €d>r

1
= A(R)K - 'R0 —— - 5e,(q, 1)

o (17a)
A(R) = IR (17b)

where E, is the amplitude of the electro-magnetic field
of the incident light, and ¢, is the dielectric constant in
a vacuum.

The intensity of the scattered light at a distance
R and time ¢ into the direction ¢ therefore becomes

1
Ii(g, o, R = A*(R)KY - 5, <I%eulg, o)?>  (18)
¥
The displacement gradient Js,,/dx, (usually de-
nominated €, cf. Equation 4) couples via the Pockel-
stensor to fluctuations of the inverse dielectric tensor
[23, 24]
B OSm
(58)“1 = Pkimn x. (19)
Xn
The fluctuations of the dielectric tensor are computed
from the fluctuations of the inverse dielectric tensor
with the help of the principal indices of refraction n,
by [6]

dg;y = — 83('821'(68~1)kl
g?k = ”1% €k (20)

Therefore, the scattered intensity computed by Equa-

tions 17-20 is
2
> (21)

The expression can be simplified by introducing the
Brillouintensor

2T, =2e (e, *p-eg) e (22)

’{s)

Z nl%nlzei-ke&lpklmnsm(q)qn
kimn

liy= AZ(R)k?'<

3
L= A(R)kS - Y VigPe, *Tyor e*{slg)*) (23)

c=1
This equation relates the scattered intensity to the
displacement of the particles by the sound wave
through Equation 19 (cf. Fig. 2). For intensity
measurements the 90A geometry is advantageous be-
cause the refractive index is not involved in the com-
putation of the sound velocity, thus leading to a better
overall accuracy. In this setup the components of the

scattering vector ¢ are

g.= —sina (24a)
gy, =0 (24b)
g, = cosa (24¢)

The relative amplitude of the sound waves can be
computed from Equation 11 by inserting the wave
vector q.

—(C11 sin® o + Cas cos’a — pVi)sx
= [(Cy3 + Cus)sinocos os, (25)
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Figure 2 Scattering of vertically polarized light by a longitudinal
sound wave travelling into the draw direction. In the case of hexag-
onal symmetry, the Pockets coefficients p;;33, with i # j, are zero.
Therefore, the resulting dielectric tensor is diagonal. In geometries
with the incoming light being vertically polarized, only the first
tensor component contributes to scattering. Because the sound
propagates into direction 3 and the light is polarized into direction
1 only py 33 influences the scattered intensity. If the sample is turned
to an angle of o = 90°, only p33,, is required as the sound wave
vector points into direction 1 and the light polarization vector
points into direction 3.

For further computations, the normalized amplitudes
are used

S24S2+82=1 §,=0 (26)

Because the pure transverse mode was not observed
in our experiments, in the following section, only
scattered intensities from quasi-longitudinal or quasi-
transverse waves are treated. The results for the trans-
verse mode are similar, but the form differs slightly.

3.4. Scattering intensities in the VV
geometry

In this geometry, the incident and the detected light

are vertically polarized. The projections of the polar-

izations onto the direction of stress ¢;., = e;- e, are

€. = €5.x = COSOL
€.y =¢6.,=0 27)
e, =es,=sina
The intensity scattered by a sound mode is
15 = AX(R)KE{|n% cos® a.(— pysinasy, + py;cosas,)
+ 2nZn? cos 0. 5in 0 (P g COS U S5 — Paq SINAS,)
+ n¥sin2o.(— p3y sinasy, + pyzcosas)?> (28)

For each sound mode, the amplitudes must be seper-
ately determined, i.e. the displacement vectors are dif-
ferent for different sound modes.

3.5. Scattering intensities in the VH
geometry

In this geometry, the incident light is vertically polar-

ized and the analysed light is horizontally polarized.



The projections of the polarizations on to the direc-
tion of stress are

. 0
€;.1 =cosa €1 = — s1no¢cos§ (29a)
. 6
¢.,=0 €., = — s1n§ (29b)
. 0
e.3 =sina €53 = cosozcosi (29¢)

and the resulting intensity is
S 2 4 /1.4 . 0
I;; = A“(R)kg{|n cos o sin ucosi
X (p118iN0GLS, — P13COSAS,)

. 6 0
+ ninf(smz 2085 — cos? o cos 5

X (P4aSINOLS, — PaaCOSAS,)
4 e
+ n, sino.cos acosi

X (— pspsinasy, + pszcosas)>>  (30)

Almost all measurements of the photoelastic constants
have been performed utilizing one of the above polar-
ization geometries. Using all of the scattered light and
not only the polarized or depolarized components
would result in a significantly lower accumulation
time of the spectra. We will now compute the scattered
intensities in the VA geometry.

3.6. Scattering intensities in the VA
geometry

In this geometry, the incident light is vertically polar-

ized. All of the scattered light is detected. The projec-

tions of the polarizations on to the direction of stress

are

. . 0
€.4 =COSO0L €. =COSuCosfP — cosasmaschosz
(31a)
.0
e.,=0 e.,=—sin=sinP (31b)

2

. . . 0
€3 =sina e 3 =sinocospP +coso¢smﬁcos§ (31c)

In this case, the scattering intensity has to be com-
puted for an arbitrary angle, B.
We obtain

1(B) = A*(R)kS

. . 6
+ nﬁnf(cos asinatcos B + cos?ausin B cos 5 C

. . 6
ni(cosza cos B — cosasinasin B cos 3 B

. . . 0
+ n§n§<cos asinocos B — sinasin B cos 3 C

2> (32a)

. . 0
+ n;‘<s1n2 acos B + cosasin Bcosz >D

B= —py;sinas, + py3cosas, (32b)
C= — psssSinas, + pisaCOSOUS, (32¢)
D = — pyysinas, + p33cosas, (32d)

The total intensity is determined by computing the
integral over all angles B (ps4 has been set to zero
because the pure transverse mode is not observable)

[

I = j 1) dp

. 0
= A*(R)k?- ( (B* + D?)-sin® a- cos® o~ cos? 3

. .., 0
+ 2BDsin? o cos?a-sin? = + B?-cos*a

+ D?-sin* oc) (33)

It is evident from Equation 32a that for o = 0° only
p13 settles the intensity, while for o = 90° only ps, is
required. This is also valid for the other polarization
geometries (Fig. 2).

3.7. Data handling

The elastic constants were calculated by a simulta-
neous non-linear fit [197 of the quasi-transverse and
quasi-longitudinal sound velocity to Equation 15. For
the computation of the photoelastic constants, the
relative scattered intensity (i.e. the intensity of the
transverse Brillouin line divided by the intensity of the
longitudinal line) as well as the elastic constants and
the sound velocities in the selected direction, are
needed. We used the calculated sound velocity instead
of the measured one for a better overall accuracy. As
the photoelastic constants cannot be determined ab-
solutely with this method [6], only relative values can
be given. p;; and ps; were determined by taking the
root of the intensities of the longitudinal mode parallel
and perpendicular to the drawing direction. p,; and
p33 were subsequently determined by a non-linear
fit to the angular scan of intensities, in which p,3
and ps; were fixed. As the birefringence is very small
it is neglected for the evaluation of the photoelastic
coefficients.

4. Results and discussion

Two sound modes have been observed, the quasi-lon-
gitudinal and the quasi-transverse. Similar to many
other polymers, no pure transverse mode was detec-
ted. Therefore, Cgg could not be determined. Fig. 3
shows sample spectra of the P4AM1P-films at A = 4.29
and A = 6.51 observed at o = 30°. The relative scat-
tered intensities of the quasi-longitudinal and quasi-
transverse lines increase with deformation, while the
positions of the lines do not change that much. For
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Figure 3 Brillouin spectra of PAM1P films stretched to a draw ratio
of (a) 4.29 and (b) 6.52 at o = 40°. Note that the Rayleigh intensity is
almost identical in (a) and (b). (c) The Brillouin band of both spectra,
showing that the intensity of the longitudinally scattered light is
decreasing while the intensity of the transversely scattered light is
apparently constant.

comparison, in Fig. 4, the elastic constants Cy, C,3,
C3;3 and C,y4 of PE, PP and P4M1P (Table II) are
plotted versus the deformation. The variation of these
constants with the draw ratio i1s very small in the films
(A = 4.5-6.5); even in the extruded rod the values for
C,; and C;; resemble the values measured in the films.
The striking contrast of PAM1P compared to PE and
PP is the small optical and mechanical anisotropy (Figs
5 and 6) despite a high molecular orientation as re-
vealed by WAXS and infrared-dichroism [25]. Birefrin-
gence averages polarizabilities. Thus the side groups
give a noticeable contribution to the perpendicularly
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Figure 4 Elastic constants of (a) polyethylene, (b) polypropylene
and (c) PAM1P. The slope of C;; decreases with bigger side groups.
For PAMI1P it is almost zero. (M) C, 1, (A) Cy 4, (O) Cy3, (@) C33, (V)
Ca4,(+) Cos. (#) C33 pp.
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Figure 5 Birefringence in oriented P4M1P. The values are very
small compared to, for example, PE {8], and stay almost constant
for larger draw ratios.
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Figure 6 Sound velocity contour plots of different polymers with
a —C-C- backbone. All samples are stretched to a draw ratio of
=~ 7. Polyethylene reaches the highest modulus, while polypropy-
lene (- - -) has a slightly lower value for C33 PAMIP (— - —-—)
shows almost isotropic behaviour when compared to the other
materials.

polarized electric field. The elastic deformation aver-
ages force constants on a molecular level [26, 27]. In
the case of PAM1P, the perpendicular contribution is
also large. The WAXS diffraction patterns measured
for some of our samples (A =~ 5, Fig. 7) are similar to
the photographs presented by He and Porter [25] for
draw ratios between 11 and 20. This concludes that in

TABLE II Resulting elastic constants for oriented P4M1P. The
transverse mode was not observed at A = 1. Because of the cylin-
drical shape of the ultra-highly oriented sample, only the data
parallel and perpendicular to the stress direction have been evalu-
ated

A Ciy Cis Css Caa
1.00 4.090 — — —

4.29 3415 2.149 5.297 1.090
5.37 3.294 2.066 5.197 0.993
5.86 3.340 2.093 5279 1.003
6.52 3.368 2.085 5.320 0.973
~ 60 3.299 — 5.626 —

the case of PAM1P extrusion and uniaxial deforma-
tion by drawing are not comparable, in contrast to PP
[6]. The effective draw ratio of the PAM1P rod sample
compared to uniaxial stretching could be estimated to
be approximately 20.

Sakurada and Kaji estimated a maximum chain
elastic modulus from the (001) crystal plane of 6.7
GPa [28]. The observed macroscopic modulus was
approximately one-third of this maximal value [25].
The modulus determined from the velocities of hyper-
sound at approximately 10 GHz (C33 =~ 5.3GPa) is
about 80% of the crystal modulus, i.e. still lower. This
is due to the contribution of the glassy amorphous
phase. With lower elastic constants compared to the
average elastic constants of PE and PP (C;; »
5.7GPa) at hypersound frequencies, PAM1P remains
nearly isotropic (Fig. 5b). The helical conformation of
the molecules (7%2/2 [25]) together with the bulky side
groups provide a predominantly isotropic distribution
of covalent bonds.

The relative scattered intensities measured for
P4AMI1P are shown in Fig. 8. Because the relative
intensities of the transverse lines are much smaller in
P4MI1P compared to PP, the relative error of the
measurement is larger for this material. Nevertheless,
as the fitting procedure converged to reasonable and
unique values for all degrees of deformation, the cha-
nges of the photoelastic constants are significant. We
estimate that the experimental error is about one
order of magnitude larger than the error of the posi-
tion of the lines, which is about 0.5%.

The dependence of photoelastic constants of PP
and P4AM1P on deformation is plotted in Fig. 9. Both
materials show a characteristic behaviour of the
photoelastic constants. For equal indices, they seem to
display a parabolic dependence while for different
indices the variation is more linear.

Nelson and Lax have formulated the theory of the
photoelastic interaction for non-ferroelectric aniso-
tropic materials [29]. They divided this effect into
symmetric, antisymmetric, indirect and direct parts.
The indirect as well as the antisymmetric contribution
must not be considered in the case of P4AM1P, because
in the hexagonal systems of the 6/mmm class (Her-
mann and Maugin) no piezo-electric and electro-optic
contributions exist. Furthermore, Ullrich [30] has
found that the electro-optic Kerr effect in oligomers of
the olefins is many orders of magnitude lower than in
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Figure 7 WAXS diffraction pattern of the P4MIP samples: (a) the undrawn film, (b) the oriented film (A = 5.8), and (c¢) the extruded rod.

polar crystals and therefore will not contribute to
Brillouin scattering. We will discuss, below, the direct
and symmetric contribution to the photoelastic effect.
The piezo-electric and electro-optic contribution of
this part is also zero, similar to the indirect contribu-
tion above.

There are three contributions to the direct and
symmetric photoelastic constants. The first one is
identical for all tensor components. It is related to the
density of the material, as it represents the change in
the number of oscillators per unit volume. This contri-
bution can be neglected in the case of P4M 1P because
the density did not change.

The second one holds for the diagonal elements of
the photoelastic tensor. It can be interpreted in two
different manners as it is related to the resonance
frequency of the polarizability into a particular direc-
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tion. In the case of PP, the probing of the polarizabil-
ity at different draw ratios is done at different frequen-
cies by the change of Cj3i3. Therefore, the change of
P33 can be interpreted as a modulation of the resonant
strength of the interaction caused by a change of the
excitation frequency, but a change of the resonant
frequency due to the deformation cannot be ruled out.
The change in p,, is therefore due to the change of the
resonant frequency, because C,, is almost unchanged
by drawing. This also holds for p,, and p33 in PAMIP,

The last one affects the non-diagonal components,
pij, of the photoelastic tensor. It comes from the coup-
ling of the oscillation in direction i with the oscillation
in direction j due to the deformation caused by the
sound wave.

The deformation of a sample by uniaxial streching
will not only cause orientation of the crystalline parts,
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Figure 8 Relative integral scattered intensities of the Brillouin lines
in polypropylene and P4MI1P. Note that the relative intensities
P4AMIP are almost one order of magnitude smaller compared to
PP. The values for PAM1P are, though small, significant and evalu-
able. A: (8)34,(--@--)49,(— — A —-—)58,(--0--)73,(b
(—V—)43,(--®-)54,(— — A —-—)59,(— —0O— —)6.5.

but also a deformation of them due to stress. This
deformation is added to the deformation due to the
sound wave, changing the resonant frequency of the
interaction or its strength.

4.1. Photoelastic constants of PP

In this material, extrusion and uniaxial drawing are
equivalent [6]. As the changes of p, ; and ps, are small
they were regarded as constant by Wang and co-
workers. Because, in the extruded samples, these com-
ponents are changing, we re-evaluated the data from
their work using the values measured with the ex-
truded samples for better accuracy. p,3 and p3; re-
main constant for most draw ratios, only for large
deformations do they change in the opposite direction,
while the sum of both is unchanged. As they reflect the
change of the coupling of the polarizability oscilla-
tions parallel and perpendicular to the stress, this can

P; (Arb. units)

(a) A

09 I -

P; [a.u.]

0.0 t

4 5 6 7
(b} A

Figure 9 Photoelastic constants of (a) PP and (b) PAM1P. (W)
P11, (O) P13, (A) P31, (¥) Pas.

TABLE III Photoelastic constants for oriented P4AMI1P. The
transverse mode was not observed at A = 1

A P11 P13 P31 D33

429 0.138 0.302 0.300 0.521
5.37 0.080 0.281 0.282 0.233
5.86 0.049 0.212 0.202 0.146
6.52 0.064 0.213 0.180 0.333

be explained by a directional sorting of orientational
invariant units. Surprisingly, during deformation,
P33 stays apparently unchanged, although C;; is en-
larged by almost one order of magnitude above the
isotropic value during stretching. On the other hand,
p11 displays significant variation, although C,, is al-
most constant during deformation. Therefore, in the
stress direction (along the chains) the phonon frequen-
cies are far away from the resonance frequencies re-
sponsible for the scattering, while in the perpendicular
direction the resonant frequency is very dependent
upon deformation, although the probing phonon fre-
quency is nearly constant.
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4.2. Photoelastic constants of P4AM1P

This material shows a completely different behaviour
in comparison with PP, even though its monomer is
also of the vinyl type. p,3 and ps; (Table III) decrease
simultaneaously, which is not an effect of decreasing
laser intensity as the Rayleigh intensity remains con-
stant (cf. Fig. 3a and b). This could be due to structural
changes. A sorting of the polarizibilities (i.e. orienta-
tional invariant units) is not probable. This corres-
ponds to the constancy of birefringence. The behaviour
of p;, and ps; is reverse compared to PP. p;; remains
virtually unchanged, while ps; displays a strong cor-
relation with A. This behaviour is easier to understand,
because most changes during stretching are expected to
be parallel and not perpendicular to the drawing direc-
tion. This indicates that the chains in this case are
deformed, and that the resonance frequency of the
interaction between light and sound is changed due to
this deformation. Perpendicular to the drawing direc-
tion this effect is small and comparable to the change of
C;;. Deutsch and Heise have observed one new X-ray
reflex [31] which is observable only in the deformed
state. It is near the primary beam and therefore corres-
ponds to a superstructure formed through the deforma-
tion process, namely the formation of the neck. Because
the internal draw ratio in the necked region is much
larger than outside, the chains are most probably fully
oriented when passing the necked region. This indicates
that further deformation will not take place by the
orientation of crystalline aggregates, but by a combina-
tion of deformation and slipping of the chains. On
slipping, the overall mechanical properties of the mater-
ial perpendicular to the draw direction will not change
much, because they are ruled by the side groups, as well
as the resonant frequency of the photoelastic interac-
tion. In contrast the coupling of the vibrations parallel
and perpendicular to the drawing direction will de-
crease on slipping, which explains the behaviour ob-
served with p;5 and p3;. The correlation of p;3 with the
draw ratio is therefore due to deformation of the chains.

5. Conclusions

Brillouin scattering is a tool for measuring the elastic
constants of a sample. Additionally, it allows changes
of the photoelastic tensor to be monitored. For special
sample and scattering geometries [6,21] even absolute
measurements of this material property are possible.
Its change on deformation is very distinct, even be-
tween similar materials like PP and P4MI1P. The
theory required to understand these changes is more
detailed compared to continuum mechanics used to
evaluate the elastic constants. The task is reduced
significantly for the considered polymers, as the den-
sity remains constant and electro-optic effects can be
ruled out. The photoelastic effect, as well as the sound
velocity anisotropy and birefringence, seem to be
dominated by the side groups of the polymers. In the
case of PAMI1P both the mechanical and optical an-
isotropy are nearly balanced between side groups and
the main-chain contribution. The use of side-groups
effects, in order to control average material properties,
seems promising.
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